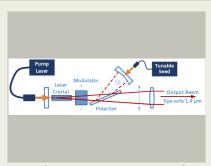
Eyesafe Direct Laser Source for LIDAR, Phase I


Completed Technology Project (2014 - 2014)

Project Introduction

We propose to demonstrate an eye-safe laser source for a DIAL CO2 sensor that meets or exceeds all topic requirements for a high-pulse-energy laser with good beam quality, transform-limited spectrum, and efficiency >25%. Our approach will use a cavity-dumped resonator to directly generate Nd 1.4-micron pulsed output, and injection seeding for spectral narrowing. This approach, while based on established technology, is innovative in finding an optimal solution from uncommon elements. Our design allows us to start with a well-behaved four-level laser instead of the problematic quasi-three-level lasers like Er:YAG and Er:glass (fiber). Moreover, it avoids the loss in efficiency that comes from using an OPO pumped by the common 1-micron Nd or Yb laser to generate eye-safe near-IR output. We also propose to demonstrate that our laser performance is tolerant of high-temperature operation, making passive cooling possible with major advantages in overall size, weight, wall plug efficiency, and power scalability.

Primary U.S. Work Locations and Key Partners

Eyesafe Direct Laser Source for Lidar Project Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	5
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	/ 2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Eyesafe Direct Laser Source for LIDAR, Phase I

Completed Technology Project (2014 - 2014)

Organizations Performing Work	Role	Туре	Location
Enlumen Technology, Inc.	Lead Organization	Industry	Mountain View, California
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Primary U.S. Work Locations	
California	Maryland

Project Transitions

June 2014: Project Start

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137478)

Images

Project Image

Eyesafe Direct Laser Source for Lidar Project Image (https://techport.nasa.gov/imag e/131522)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Enlumen Technology, Inc.

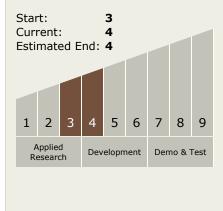
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Lawrence Myers


Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Eyesafe Direct Laser Source for LIDAR, Phase I

Technology Areas

Primary:

- TX08 Sensors and Instruments
 TX08.1 Remote Sensing Instruments/Sensors
 TX08.1.5 Lasers
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

